nsupdate — Dynamic DNS update utility
nsupdate
[-d
]
[-D
]
[-L
]
[
[level
-g
]
| [-o
]
| [-l
]
| [-y
]
| [[hmac:]keyname:secret
-k
]
]
[keyfile
-t
]
[timeout
-u
]
[udptimeout
-r
]
[udpretries
-R
]
[randomdev
-v
]
[-T
]
[-P
]
[-V
]
[filename]
nsupdate is used to submit Dynamic DNS Update requests as defined in RFC 2136 to a name server. This allows resource records to be added or removed from a zone without manually editing the zone file. A single update request can contain requests to add or remove more than one resource record.
Zones that are under dynamic control via nsupdate or a DHCP server should not be edited by hand. Manual edits could conflict with dynamic updates and cause data to be lost.
The resource records that are dynamically added or removed with nsupdate have to be in the same zone. Requests are sent to the zone's master server. This is identified by the MNAME field of the zone's SOA record.
Transaction signatures can be used to authenticate the Dynamic DNS updates. These use the TSIG resource record type described in RFC 2845 or the SIG(0) record described in RFC 2535 and RFC 2931 or GSS-TSIG as described in RFC 3645.
TSIG relies on
a shared secret that should only be known to
nsupdate and the name server.
For instance, suitable key and
server statements would be added to
/etc/named.conf
so that the name server
can associate the appropriate secret key and algorithm with
the IP address of the client application that will be using
TSIG authentication. You can use ddns-confgen
to generate suitable configuration fragments.
nsupdate
uses the -y
or -k
options
to provide the TSIG shared secret. These options are mutually exclusive.
SIG(0) uses public key cryptography. To use a SIG(0) key, the public key must be stored in a KEY record in a zone served by the name server.
GSS-TSIG uses Kerberos credentials. Standard GSS-TSIG mode
is switched on with the -g
flag. A
non-standards-compliant variant of GSS-TSIG used by Windows
2000 can be switched on with the -o
flag.
Debug mode. This provides tracing information about the update requests that are made and the replies received from the name server.
Extra debug mode.
keyfile
The file containing the TSIG authentication key.
Keyfiles may be in two formats: a single file containing
a named.conf
-format key
statement, which may be generated automatically by
ddns-confgen, or a pair of files whose names are
of the format K{name}.+157.+{random}.key
and
K{name}.+157.+{random}.private
, which can be
generated by dnssec-keygen.
The -k
may also be used to specify a SIG(0) key used
to authenticate Dynamic DNS update requests. In this case, the key
specified is not an HMAC-MD5 key.
Local-host only mode. This sets the server address to
localhost (disabling the server so that the server
address cannot be overridden). Connections to the local server will
use a TSIG key found in /var/run/named/session.key
,
which is automatically generated by named if any
local master zone has set update-policy to
local. The location of this key file can be
overridden with the -k
option.
level
Set the logging debug level. If zero, logging is disabled.
port
Set the port to use for connections to a name server. The default is 53.
Print the list of private BIND-specific resource record
types whose format is understood
by nsupdate. See also
the -T
option.
udpretries
The number of UDP retries. The default is 3. If zero, only one update request will be made.
randomdev
Where to obtain randomness. If the operating system
does not provide a /dev/random
or
equivalent device, the default source of randomness is keyboard
input. randomdev
specifies the name of
a character device or file containing random data to be used
instead of the default. The special value
keyboard
indicates that keyboard input
should be used. This option may be specified multiple times.
timeout
The maximum time an update request can take before it is aborted. The default is 300 seconds. Zero can be used to disable the timeout.
Print the list of IANA standard resource record types
whose format is understood by nsupdate.
nsupdate will exit after the lists are
printed. The -T
option can be combined
with the -P
option.
Other types can be entered using "TYPEXXXXX" where "XXXXX" is the decimal value of the type with no leading zeros. The rdata, if present, will be parsed using the UNKNOWN rdata format, (<backslash> <hash> <space> <length> <space> <hexstring>).
udptimeout
The UDP retry interval. The default is 3 seconds. If zero, the interval will be computed from the timeout interval and number of UDP retries.
Use TCP even for small update requests. By default, nsupdate uses UDP to send update requests to the name server unless they are too large to fit in a UDP request in which case TCP will be used. TCP may be preferable when a batch of update requests is made.
Print the version number and exit.
[hmac:]keyname:secret
Literal TSIG authentication key.
keyname
is the name of the key, and
secret
is the base64 encoded shared secret.
hmac
is the name of the key algorithm;
valid choices are hmac-md5
,
hmac-sha1
, hmac-sha224
,
hmac-sha256
, hmac-sha384
, or
hmac-sha512
. If hmac
is not specified, the default is hmac-md5
or if MD5 was disabled hmac-sha256
.
NOTE: Use of the -y
option is discouraged because the
shared secret is supplied as a command line argument in clear text.
This may be visible in the output from
ps(1)
or in a history file maintained by the user's shell.
nsupdate
reads input from
filename
or standard input.
Each command is supplied on exactly one line of input.
Some commands are for administrative purposes.
The others are either update instructions or prerequisite checks on the
contents of the zone.
These checks set conditions that some name or set of
resource records (RRset) either exists or is absent from the zone.
These conditions must be met if the entire update request is to succeed.
Updates will be rejected if the tests for the prerequisite conditions
fail.
Every update request consists of zero or more prerequisites and zero or more updates. This allows a suitably authenticated update request to proceed if some specified resource records are present or missing from the zone. A blank input line (or the send command) causes the accumulated commands to be sent as one Dynamic DNS update request to the name server.
The command formats and their meaning are as follows:
Sends all dynamic update requests to the name server
servername
.
When no server statement is provided,
nsupdate
will send updates to the master server of the correct zone.
The MNAME field of that zone's SOA record will identify the
master
server for that zone.
port
is the port number on
servername
where the dynamic update requests get sent.
If no port number is specified, the default DNS port number of
53 is
used.
Sends all dynamic update requests using the local
address
.
When no local statement is provided,
nsupdate
will send updates using an address and port chosen by the
system.
port
can additionally be used to make requests come from a specific
port.
If no port number is specified, the system will assign one.
Specifies that all updates are to be made to the zone
zonename
.
If no
zone
statement is provided,
nsupdate
will attempt determine the correct zone to update based on the
rest of the input.
Specify the default class.
If no class
is specified, the
default class is
IN
.
Specify the default time to live for records to be added.
The value none
will clear the default
ttl.
Specifies that all updates are to be TSIG-signed using the
keyname
secret
pair.
If hmac
is specified, then it sets the
signing algorithm in use; the default is
hmac-md5
or if MD5 was disabled
hmac-sha256
. The key
command overrides any key specified on the command line via
-y
or -k
.
Use GSS-TSIG to sign the updated. This is equivalent to
specifying -g
on the commandline.
Use the Windows 2000 version of GSS-TSIG to sign the updated.
This is equivalent to specifying -o
on the
commandline.
When using GSS-TSIG use realm_name
rather
than the default realm in krb5.conf
. If no
realm is specified the saved realm is cleared.
Requires that no resource record of any type exists with name
domain-name
.
Requires that
domain-name
exists (has as at least one resource record, of any type).
Requires that no resource record exists of the specified
type
,
class
and
domain-name
.
If
class
is omitted, IN (internet) is assumed.
This requires that a resource record of the specified
type
,
class
and
domain-name
must exist.
If
class
is omitted, IN (internet) is assumed.
The
data
from each set of prerequisites of this form
sharing a common
type
,
class
,
and
domain-name
are combined to form a set of RRs. This set of RRs must
exactly match the set of RRs existing in the zone at the
given
type
,
class
,
and
domain-name
.
The
data
are written in the standard text representation of the resource
record's
RDATA.
Deletes any resource records named
domain-name
.
If
type
and
data
is provided, only matching resource records will be removed.
The internet class is assumed if
class
is not supplied. The
ttl
is ignored, and is only allowed for compatibility.
Adds a new resource record with the specified
ttl
,
class
and
data
.
Displays the current message, containing all of the prerequisites and updates specified since the last send.
Sends the current message. This is equivalent to entering a blank line.
Displays the answer.
Turn on debugging.
Print version number.
Print a list of commands.
Lines beginning with a semicolon are comments and are ignored.
The examples below show how nsupdate could be used to insert and delete resource records from the example.com zone. Notice that the input in each example contains a trailing blank line so that a group of commands are sent as one dynamic update request to the master name server for example.com.
# nsupdate > update delete oldhost.example.com A > update add newhost.example.com 86400 A 172.16.1.1 > send
Any A records for oldhost.example.com are deleted. And an A record for newhost.example.com with IP address 172.16.1.1 is added. The newly-added record has a 1 day TTL (86400 seconds).
# nsupdate > prereq nxdomain nickname.example.com > update add nickname.example.com 86400 CNAME somehost.example.com > send
The prerequisite condition gets the name server to check that there are no resource records of any type for nickname.example.com. If there are, the update request fails. If this name does not exist, a CNAME for it is added. This ensures that when the CNAME is added, it cannot conflict with the long-standing rule in RFC 1034 that a name must not exist as any other record type if it exists as a CNAME. (The rule has been updated for DNSSEC in RFC 2535 to allow CNAMEs to have RRSIG, DNSKEY and NSEC records.)
/etc/resolv.conf
used to identify default name server
/var/run/named/session.key
sets the default TSIG key for use in local-only mode
K{name}.+157.+{random}.key
base-64 encoding of HMAC-MD5 key created by dnssec-keygen(8) .
K{name}.+157.+{random}.private
base-64 encoding of HMAC-MD5 key created by dnssec-keygen(8) .