
Assessment of the Effect of Memory Page Retirement
on System RAS Against Hardware Faults

Dong Tang, Peter Carruthers, Zuheir Totari, Michael W. Shapiro
Sun Microsystems, Inc.

dong.tang{peter.carruthers, zuheir.totari, michael.shapiro}@sun.com

Abstract
The Solaris 10 Operating System includes a

number of new features for predictive self-healing. One
such feature is the ability of the Fault Management
software to diagnose memory errors and drive
automatic memory page retirement (MPR), intended to
reduce the negative impact of permanent memory
faults that generate either correctable or uncorrectable
errors on system reliability, availability, and
serviceability (RAS). The MPR technique allows
memory pages suffering from correctable errors and
relocatable clean pages suffering from uncorrectable
errors to be removed from use in the virtual memory
system without interrupting user applications. It also
allows relocatable dirty pages associated with
uncorrectable errors to be isolated with limited impact
on affected user processes, avoiding an outage for the
entire system. This study applies analytical models,
with parameters calibrated by field experience, to
quantify the reduction that can be made by this
operating system self-healing technique on the system
interruptions, yearly downtime, and number of services
introduced by hardware permanent faults, for typical
low-end and mid-range server systems. The results
show that significant improvements can be made on
these three system RAS metrics by deploying the MPR
capability.

1. Introduction
Modern operating systems (OS), especially those

running on computer servers, are incorporating more
and more self-healing techniques [3, 6]. By self-
healing, we mean the system is able to diagnose and
recover from hardware and software component level
failures automatically, without causing any apparent
interruption to most applications. In order for a system
to be self-healing, it must have robust failure detection,
diagnosis, isolation, and handling capabilities. The self-
healing for hardware problems is typically done by
taking the failed component, such as a CPU, memory
region, or I/O channel, off line while continuing to
operate with the remaining system resources, achieving
a graceful degradation rather than an undesired
disruption of the entire system.

A recent study [5] of field failure data collected by
Microsoft from Windows XP machines reveals that

memory is the most frequently failing component
among hardware failures. This conclusion matches the
result of a case study of Sun low-end and mid-range
servers in the field that memory is at the top of the
system downtime pareto for all hardware problems.
Mitigating the disruption of memory failures on system
operation is thus expected to have significant effect on
the system reliability and availability. This issue has
been realized by major server vendors and addressed in
advanced UNIX systems. For instance, dynamic
configuration of memory blocks has recently been
implemented in the AIX system [4] and automatic page
retirement has recently been implemented in the Solaris
system [1].

The Solaris memory page retirement (MPR)
capability is a self-healing technique that removes a
physical page of memory from use by the system in
response to Error Correction Code (ECC) errors
associated with that page. The enhanced MPR
technology in Solaris 10 is driven by a Fault Manager
containing diagnosis software [7] that examines any
memory correctable errors (CEs) and uncorrectable
errors (UEs) detected by the underlying hardware. The
diagnosis software can retire memory pages containing
CEs and relocatable clean pages (a clean page can be
refilled from its backing object) containing UEs without
interrupting user applications. It can also isolate
relocatable dirty pages containing UEs with limited
impact on affected user processes to avoid an outage
for the entire system.

The Solaris MPR technology is also hardware
independent: the implementation is all common code in
the virtual memory subsystem, and the diagnosis
software has been implemented for multiple variants of
the UltraSPARC processor as well as the AMD
OpteronTM family of processors. This technology could
easily be adopted by other operating systems with a
modern virtual memory subsystem. Therefore, a
quantitative RAS analysis of MPR to measure the
benefit of this technology is of interest to the OS
developers, system designers, and end users. This
study, using analytical models combined with field or
engineering data, quantifies the reliability, availability,
and service cost benefits of deploying MPR on typical
low-end and mid-range data center servers.

The evaluation methodology used in this study is
the hierarchical Markov modeling approach

International Conference on Dependable Systems and Networks, June 2006 1

implemented in RAScad [8], a Sun internal RAS
architecture modeling tool with the automatic model
generation capability. The tool supports integrated
modeling of availability, performability and service
cost. The rest of the paper is organized as follows.
Section 2 gives an overview of MPR technique. Section
3 discusses the modeled configurations and associated
assumptions. Section 4 presents the models and
parameters. Section 5 analyzes results generated from
the models. Section 6 concludes this study.

2. Overview of MPR
The MPR technique itself is quite simple: if a

physical memory page is believed to be affected by an
underlying hardware fault (e.g., a weak cell or faulty
row in a memory chip or DRAM), the affected page can
be retired by relocating its content to another physical
page, and placing the retired page on a list of physical
pages that should not be subsequently allocated by the
virtual memory system. If the underlying fault manifests
itself as one or more CEs to the operating system, the
page retirement can be completed immediately by
copying its content to another physical page and
updating the virtual memory page translation tables.

If the underlying fault manifests as a UE on a clean
page, the page can be retired and the OS can take a
subsequent page fault to allocate a new physical page
and re-read the contents of the page from the associated
backing object. If a UE affects a dirty page and the UE
is detected on a cache write back, Solaris marks the
page as having a UE but defers action until the page is
subsequently accessed (hoping the page will instead be
freed). Finally, if a UE affects a dirty page and the
error is detected on an access, the operating system
forcibly terminates the affected process, retires the
affected page, and then restarts the affected service.
Therefore, only pages that are not relocatable at all,
such as those used within particular regions of the
kernel itself, are not retirable.

The diagnosis software uses knowledge of the
hardware memory layout and processor memory error
syndromes to drive its decision-making as to the use of
MPR. If sufficient pages within a Dual In-line Memory
Module (DIMM, the basic field replaceable memory
component) have been retired, the software can publish
a message to a human administrator indicating that it is
time for the DIMM to be replaced.

MPR is implemented entirely in software, and is
architecture-independent. It provides a cost-effective,
complementary technique to hardware memory
reliability technologies such as chipkill ECC and
redundant memory channels and chips. It leverages the
underlying ECC features and provides an additional
recovery action for the system through the software
approach. In particular, MPR provides a very cost-
effective solution to memory failures that are isolated to
small regions of cells: no additional hardware cost and
performance cost are incurred, memory capacity
gracefully degrades by only the size of a physical page
(typically as small as 4K or 8K bytes), and memory
error recovery is transparent to user applications.

3. Configurations and assumptions
In this study, two typical server systems, a low-end

data center server (System 1) and a mid-range data
center server (System 2), are selected for investigating
the effect of the Solaris MPR feature. The studied
platforms do not have sophisticated fault tolerant
memory architectures such as chip sparing and
automatic chip reconfiguration, other than the regular
ECC (single-bit error correction and double-bit error
detection) support. Some of the current generation
server systems have incorporated the chipkill-correct
ECC (which can correct multiple erroneous bits from
one memory chip) technology [2]. The models
discussed in this paper are also applicable to such
memory architectures with relevant parameters (e.g.,
Fraction of Correctable Errors) adjusted to reflect the
reduced percentage of uncorrectable errors due to the
chipkill technology.

Some of the configurable components and their
RAS features in the two systems are described below.
System 1 includes the following components.
• Four processor chips (degradable, no hot swap)
• 32 GB memory (degradable, no hot swap)
• Four hard disks (redundant, hot swappable)
• Four power supply units (redundant, hot swappable)
• Two PCI cards (non-redundant)
System 2 includes the following components.
• 24 processor chips (degradable, hot swappable)
• 192 GB memory (degradable, hot swappable)
• Six power supplies (redundant, hot swappable)
• Eight PCI cards (redundant, hot swappable)

Two models, one for the system without MPR and
one for the system with MPR, are developed in this
study to do quantitative comparisons. To simplify the
study, both models assume constant failure and repair
rates. In addition, the model for the system without
MPR is based on the following assumptions:
• Repeated CEs caused by a memory fault does not

disrupt the system but a scheduled service is
required to replace the faulty memory component.

• UEs caused by a memory fault is handled by the
automatic system recovery (ASR) functionality of
the server architecture. That is, the system will de-
configure the memory bank containing the faulty
memory component by rebooting itself and return to
a degraded operational mode. Later on, a scheduled
service is required to replace the faulty memory
component.
The model for the system with MPR is based on

the following assumptions:
• When CEs or UEs occur, if all pages involved are

retired successfully, the CEs/UEs will not disrupt
the system and the faulty memory component will
either not be replaced or be replaced (if the number
of retired pages exceeds a threshold) in a deferred
service action, therefore reducing unexpected
system interruptions and downtime as well as the
number of services.

• When CEs or UEs occur, if not all pages involved
are retired successfully, the effect of CEs or UEs is

International Conference on Dependable Systems and Networks, June 2006 2

the same as that described above for the system
without MPR.

4. Models and parameters
Figure 1 shows the top level Markov model for the

system without MPR deployed. In the diagram, each
circle represents a system state. If a state is marked by
1, it is an up state. If a state is marked by 0, it is a down
state. When the system goes from an up state to a down
state, a system interruption occurs. The expression
beside a transition arrow represents the transition rate
for the system to go from one state to another state. The
rate out of a down state reflects downtime the system
stays in that state. The notation used in the models is
explained below.

Figure 1. Top level model without MPR
• Normal: State in which the system is functioning

properly (no faults)
• Mem_UE: State in which the system experienced

UEs and is automatically restarting itself to de-
configure the faulty memory bank

• Degraded: State in which the system is running in a
degraded mode (after de-configuring the faulty
memory bank) and waiting for replacement of the
faulty memory component

• Mem_CE: State in which the system is experiencing
repeated CEs and a service is scheduled to replace
the faulty memory component

• On_Repair: State in which the faulty memory
component is being replaced on line

• Off_Repair: State in which the faulty memory
component is being replaced off line

• Other_Down: State in which the system is down due
to faults of hardware other than memory

• La_mem: Permanent fault rate for entire memory
• La_dimm: Permanent fault rate for a 1GB DIMM (

1/1,500,000 hours, provided by vendors)
• N: Number of 1GB DIMMs in the system
• FCE: Fraction of correctable errors among all

memory errors (default = 80% for platforms with
regular ECC, estimated from field data)

• FHS: Fraction of the faulty memory component
replacements that are done by hot swap on line
without interrupting the OS and user applications

• Tboot: System reboot time (5 minutes for System 1

and 15 minutes for System 2)
• Tlogistic: Logistic time – time for service personnel

to arrive at the scene when the system is down (2
hours, determined by the best service contract)

• Twaiting: Service waiting time – waiting for off-
peak hours to repair the system (24 hours)

• Trepair: Time of replacing the faulty memory
component (1 hour, a conservative estimate

• La_other: System failure rate due to other hardware
problems than memory faults

• Mu_other: System recovery rate from the above
failure
When a CE occurs, the system goes into state

Mem_CE where the fault may generate multiple CEs.
In this state, the system no longer has the capability to
correct an additional single-bit error in the checkword
that already contains an erroneous bit from the faulty
memory component. To avoid the potential hazard
caused by this loss of memory redundancy, the system
administrator is assumed to schedule a service to
replace the faulty memory component at an off-peak
time (Mem_CE -> Repair_Mem), to restore the
redundancy. In the time window waiting for service, a
second single-bit (hard or soft) error occurring in the
same checkword would generate a UE. A calculation
based on engineering standards shows that the
occurrence probability of such an event is extremely
low in the time window (24 hours) so that it is
negligible and hence not shown in the model.

When a UE occurs that requires a system reset, the
ASR functionality executes after the reboot but before
the OS kernel initializes to de-configure the faulty
memory bank. After ASR, the system runs in a
degraded mode, waiting for an administer to replace the
faulty memory component (Normal -> Mem_UE ->
Degraded).

The replacement of faulty memory components as
well as CPU's and associated boards can be done on
line (no downtime) if the dynamic reconfiguration and
hot swap functionality is provided by the hardware
platform. Some users prefer the off-line repair actions
(stop the system and incur downtime) to avoid possible
damage caused by human error and other imperfect on-
line repair problems. Thus, the parameter FHS is
introduced in the model to account for the percentage
of repairs that do not incur downtime. This parameter
determines the fraction of the rate from state Degraded
to states On_Repair or Off_Repair, both of which are
service states. For the System 2 model, FHS is set to
50%, estimated based on our field observation, and a
parametric analysis is done later on this parameter. For
System 1, FHS is set to 0 because it has no hot swap
capability for memory.

If a system failure occurs due to hardware
problems other than memory faults, the system goes
from the Normal state to the Other_Down state. The
associated failure rate (La_other) and repair rate
(Mu_other) are evaluated from a submodel called Other
HW Model shown in the gray color rectangle box
which represents the interface between the parent model
and the submodel. The parameter's bindings are defined
in the box, i.e., La_other and Mu_other, are bound to

International Conference on Dependable Systems and Networks, June 2006 3

the submodel output Lambda1 and Mu1 which are the
equivalent failure rate and repair rate [8] of the
submodel. Details of the submodel are not further
discussed in this paper.

Figure 2 shows the top level Markov model for the
system with MPR deployed. Compared with the model
without MPR, this model has two more states:
UE_Crash and CE_Remain to account for unsuccessful
page retirement. The additional notation used in the
model is explained below.
• UE_Crash: State in which the system is restarting

itself due to unsuccessful attempts to isolate and
recover from an uncorrectable error

• CE_Remain: State in which correctable errors
remain in the system after unsuccessful attempts to
retire pages associated with correctable errors

• Tpr: Time to page retirement (5 seconds, a
conservative upper bound)

• Ps_ce: Probability of successful page retirement for
correctable errors (default = 0.75, estimated from
field data)

• Ps_ue: Probability of successful page retirement for
uncorrectable errors (default = 0.5)

• FDR: Fraction of deferred replacement of faulty
memory which occurs when the number of pages
retired exceeds a threshold (default = 50%,
estimated from field data)

Figure 2. Top level model with MPR
When multiple CEs occur (a single CE event does

not trigger MPR to avoid retiring pages as the result of
a soft upset), the system tries to retire the affected
pages. In most cases, pages containing CEs are retired
successfully, thus avoiding a downtime and unexpected
interruption to replace the faulty memory. If the number
of pages retired exceeds a threshold, the associated
faulty memory components can be replaced in a
periodic maintenance event which is not counted as an
interruption or downtime, or equivalent to an on-line
repair in the model. This event is modeled by the
parameter FDR which is set to 50%, an estimate from
field data. However, the page retirement could fail due
to various reasons such as imperfect handling of storms
of correctable errors (Mem_CE -> CE_Remain). The
probability of successful page retirement for correctable
errors (Ps_ce) is set to 0.75, based on the field
performance.

When a persistent UE occurs, the system tries to

retire the affected page in state Mem_UE (notice this is
no longer a down state). If the page is associated with a
user process, whether it is clean or dirty, the page is
either transparently retired (for the clean case), or the
related user processes are killed and the corresponding
service is automatically restarted by the Solaris Service
Manager. In both cases, the system is kept in the up
state and the page retirement is considered successful
(Mem_UE -> Normal). Since the faulty memory bits
have now been isolated, it is not yet necessary to
schedule a service to replace the faulty memory
component. If the page is associated with the kernel
itself and is not relocatable, the system cannot retire
the page and has to restart itself to de-configure the
faulty memory bank (Mem_UE -> UE_Crash). After
the restart, the system runs in a degraded mode, waiting
for replacement of the faulty memory component. The
probability of successful page retirement for UEs
(Ps_ue) is assumed to be 0.5. In the uncertainty analysis
discussed later, the parameter is varied in a wide range
to show its effect on system availability.

The component level failure rates are calculated
using methods described in Telcordia TR-NWT-
000332 [10] with part-level (ICs, resistors, capacitors,
etc.) failure rates adjusted based on field data, or
directly estimated from field data, or provided by the
OEM vendors. The field data used to calibrate
component failure rates were collected from tens of
thousands of field machines with billions of cumulative
operating hours. In addition, two field case studies were
conducted to estimate MPR specific parameters (FCE,
Ps_ce, etc.). One study was based on the data
representing 376,000 system hours of Sun mid-range
servers for which detailed scenarios of CE and UE
events as well as MPR actions were recorded. Another
study was based on the data collected from 16,000
platforms of Sun high-end servers for about one year
period, which showed that the number of DIMM
dispatches to the field had been reduced by about 35%
for systems with the deployment of MPR. In the next
section, the most sensitive parameters are identified and
an uncertainty analysis is conducted on these
parameters.

5. Analysis of results
Tables 1 and 2 show results generated from the

models with and without MPR discussed above, for the
two systems. With MPR deployed, system reliability,
availability, and service cost can all be improved. In
particular, the system interruption rate can be reduced
by 42% to 45%. The system yearly downtime can be
reduced by 37% to 54%. The number of services can
be reduced by about 20%.

Table 1. RAS results for system 1
Model Yearly

Interruptions
Yearly

Downtime
Yearly

Services
Without MPR 0.351 23.23min. 0.319
With MPR 0.202 14.65min. 0.253
Reduction by
MPR

42.5% 36.9% 20.7%

International Conference on Dependable Systems and Networks, June 2006 4

Table 2. RAS results for system 2
Model Yearly

Interruptions
Yearly

Downtime
Yearly

Services
Without MPR 1.106 56.81 min. 1.918
With MPR 0.604 25.86 min. 1.528
Reduction by
MPR

45.4% 54.5% 20.3%

The variance on RAS improvements can be
explained by the RAS architectures of these systems.
For a redundant component, the downtime associated
with replacing the faulty component is just the repair
time plus reboot time. For a non-redundant component,
the failing of the component would keep the system
down while waiting for the arrival of the service
personnel, which makes the downtime much longer.
That is, the more redundancy in the system, the less the
fraction of downtime caused by other HW faults or the
more effective the MPR on improving system
availability, as seen from the downtime reduction for
the two systems.

The above results were evaluated based on the
parameters defined in the previous section. Some of
these parameters are configuration or workload
dependent (e.g., Tboot and La_dimm) and some are the
FMA implementation related (e.g., Ps_ce and Ps_ue).
What are the most sensitive parameters in terms of
system downtime? A parameter sensitivity analysis was
performed to identify sensitive parameters. The analysis
results indicate that the system downtime is sensitive to
the following parameters (ordered by sensitivity):
Ps_ce, FHS, Trepair, FCE, La_dimm, Tboot, and
Ps_ue. Among these parameters, La_dimm is
independent of MPR technology, system configuration
and maintenance and is discussed later. FHS is specific
to System 2 (which has the memory hot swap
capability) and is also discussed later. For all other
sensitive parameters, we do an uncertainty analysis to
investigate the impact of variance of these parameters
on system RAS.

The uncertainty analysis is supported in RAScad
and has been used in evaluating availability for the Sun
Java System Application Server system [9]. The
method performs random sampling from parameter
ranges defined by the user and can address questions
such as: Assume we have n (sample size) systems with
each system's parameters selected by randomly
sampling from possible ranges in customer sites or
determined by workloads, configurations, and other
factors, what are the average system availability and
confidence intervals? The ranges for the selected
parameters are defined as follows.
• Tboot: 2 - 10 min. for System 1, 10 - 20 min. for

System 2
• Trepair: 0.5 - 1.5 hours
• FCE: 80% - 90%
• Ps_ce: 0.6 – 0.95
• Ps_ue: 0.25 – 0.75

The sample size is 10,000. In each sampling,
RAScad randomly picks up a value for each parameter

from the above ranges to calculate system results. The
90% confidence interval (90% CI) can be determined
from the 10,000 points in the RAScad output, as shown
in Tables 3 and 4. Taking these 90% CI's into account,
the improvement made by MPR ranges from 37% to
59% for system interruptions, from 27% to 73% for
system downtime, and from 17% to 26% for system
services, depending on platforms, configurations and
workloads.

Table 3. Uncertainty analysis results for System 1
Yearly Interrupts Yearly Downtime Yearly Services
90% CI Reduc-

tion
90% CI
(min.)

Reduc-
tion

90% CI Reduc-
tion

0.161 54.1% 12.26 47.2% 0.237 25.7%
0.220 37.3% 16.99 26.9% 0.263 17.6%

Table 4. Uncertainty analysis results for System 2
Yearly Interrupts Yearly Downtime Yearly Services
90% CI Reduc-

tion
90% CI
(min.)

Reduc-
tion

90% CI Reduc-
tion

0.452 59.0% 15.03 73.5% 1.430 25.4%
0.663 40.1% 34.96 38.5% 1.588 17.2%

The failure rate of memory components determines
the memory contribution to the overall system failures
and thus directly affects the results of the MPR RAS
analysis. Figures 3 and 4 show how the variance of
memory component failure rate in a possible range
would change the results for Systems 1 and 2. When the
DIMM MTBF (1/La_dimm) varies from 1,000,000 to
5,000,000 hours, the effect of MPR on system RAS can
decrease by over 50%. A recent case study on a sample
of mid-range data center servers in the field indicates
that the average DIMM MTBF is at the low end of the
above range (close to the vendor supplied data).
However, we cannot exclude the possibility of higher
MTBF numbers to be seen for DIMMs of better quality
or running on different workloads. This parametric
analysis provides an insight into the effect of the
memory failure rate on the benefit of MPR.

Figure 3. Effect of DIMM MTBF on system 1

International Conference on Dependable Systems and Networks, June 2006 5

1000000 2000000 3000000 4000000 5000000

0

5

10

15

20

25

30

35

40

45

50 48.4

38

31.2

26.6
23.1

43.8

32

25.1

20.7
17.7

23.8

18

14.2
11.9 10.6

Interruptions
Downtime
Services

DIMM MTBF (hours)

R
ed

uc
tio

n
in

 %

Figure 4. Effect of DIMM MTBF on system 2
Finally, we investigate the effect of a parameter

specific to System 2, FHS, the fraction of hot swap
replacement of faulty memory components. Figure 5
shows how this parameter affects the analysis results.
The lower the FHS, the more the impact of MPR on
system reliability and availability. That is, systems
using less the hot swap capability would be more
beneficial from the MPR deployment. This is because
less hot swap translates to more system interruptions
and downtime.

Figure 5. Effect of FHS on system 2

6. Conclusions
In this study Markov models, combined with field

measurements, were used to assess the improvements
made by the Solaris MPR self-healing technique on
system interruptions, downtime, and service actions
introduced by permanent memory faults, for typical
server systems. The parameters used in the models were
calibrated by field data or estimated using the
engineering judgment. The uncertainty analysis was
conducted to obtain the 90% confidence intervals by
varying sensitive parameters in wide ranges. The
parametric analysis was also done on key parameters.
The results indicate that with MPR deployed, the
system interruptions caused by hardware faults can be
reduced by 42% to 45%, the system downtime caused
by hardware faults can be reduced by 37% to 54%, and
the number of system services incurred by hardware
faults can be reduced by about 20%.

Since the memory configuration in the modeled

platforms is maximized, the analysis results tend to be
optimistic. However, these results are consistent with
the field data in that memory is the top item of the
system interruptions and downtime caused by hardware
problems. The results are also consistent with our
observation that the number of DIMM dispatches to the
field has been reduced by about 35% for systems with
the deployment of MPR.

Since the MPR feature is implemented entirely in
software, it provides an extremely cost-effective RAS
feature that complements hardware reliability features
for memory such as redundant memory chips and lanes,
and chipkill ECC. MPR can have a dramatic RAS
improvement on systems with a large memory
configuration that lacks redundancy, and therefore is
especially well-suited to systems where the use of
redundancy is constrained by cost, physical space,
power, or cooling requirements. MPR has been
successfully implemented for Solaris on both
UltraSPARC and OpteronTM based systems, and can
easily be added to any operating system with modern
virtual memory management features.

Acknowledgments
Many thanks to Charlie Slayman, William Bryson,

and Richard Elling for their valuable inputs to this
study. Thanks also go to Peter Carr, Ganesh
Ramamurthy, Tarek Derbas and Son Pham for
providing support to this study. Thomas Simons
initiated this study for addressing questions from
customers in the telecommunication industry.

References
[1] T. M. Chalfant, Solaris Operating System Availability
Features, Sun BluePrints™ OnLine, Jan. 2004.
[2] T. J. Dell, A white Paper on the Benefits of Chipkill-
Correct ECC for PC Server Main Memory, White Paper,
IBM, Nov. 1997.
[3] A. G. Ganek and T. A. Corbi, “The Dawning of the
Autonomic Computing Era,” IBM Systems Journal, Vol. 42,
No. 1, Jan. 2003.
[4] J. Jann, L. M. Browning, and R. S. Burugula, “Dynamic
Reconfiguration: Basic Building Blocks for Autonomic
Computing on IBM pSeries Servers,” IBM Systems Journal,
Vol. 42, No. 1, Jan. 2003.
[5] B. Murphy, "Automating Software Failure Reporting,"
ACM Queue, Vol. 2, No. 8, Nov. 2004.
[6] M. W. Shapiro, "Sel-Healing in Modern Operating
Systems," ACM Queue, Vol. 2, No. 8, Nov. 2004.
[7] Sun Microsystems, Predictive Self-Healing in the Solaris
10 Operating System – A Technical Introduction, White
Paper, June 2004.
[8] D. Tang and K. S. Trivedi, "Hierarchical Computation of
Interval Availability and Related Metrics," Proc.
International Conference on Dependable Systems and
Networks (DSN-2004), June 2004.
[9] D. Tang, D. Kumar, S. Duvur, O. Torbjornsen,
"Availability Measurement and Modeling for An Application
Server," Proc. International Conference on Dependable
Systems and Networks (DSN-2004), June 2004.
[10] Telcordia Technologies, SR332 - Reliability Prediction
Procedure of Electronic Equipment, Issue 1, May 2001.

International Conference on Dependable Systems and Networks, June 2006 6

0 0.25 0.5 0.75 1

0

5

10

15

20

25

30

35

40

45

50

55

60

50.5
48.5

45.4

39.5

24.9

56.7 55.9 54.5
50.8

22.7 Interruptions
Downtime

Fraction of Hot Swap (FHS)

R
ed

uc
tio

n
in

 %

1000000 2000000 3000000 4000000 5000000

0
5

10
15
20
25
30
35
40
45
50
55
60

50.2

41.4

35.1

30.5
27

58.4

51

45.3

40.7
37

23.5

17.8
14.3

12 10.3

Interruptions
Downtime
Services

DIMM MTBF (hours)

R
ed

uc
tio

n
in

 %

