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Abstract
The  Solaris  10  Operating  System  includes  a

number of new features for predictive self-healing. One
such  feature  is  the  ability  of  the  Fault  Management
software  to  diagnose  memory  errors  and  drive
automatic memory page retirement (MPR), intended to
reduce  the  negative  impact  of  permanent  memory
faults that generate either correctable or uncorrectable
errors  on  system  reliability,  availability,  and
serviceability  (RAS).  The  MPR  technique  allows
memory pages  suffering from correctable  errors  and
relocatable  clean pages suffering from uncorrectable
errors to be removed from use in the virtual memory
system without interrupting  user applications.  It  also
allows  relocatable  dirty  pages  associated  with
uncorrectable errors to be isolated with limited impact
on affected user processes, avoiding an outage for the
entire  system.  This  study  applies  analytical  models,
with  parameters  calibrated  by  field  experience,  to
quantify  the  reduction  that  can  be  made  by  this
operating system self-healing technique on the system
interruptions, yearly downtime, and number of services
introduced by hardware permanent faults,  for typical
low-end  and  mid-range  server  systems.  The  results
show that  significant  improvements  can be  made  on
these three system RAS metrics by deploying the MPR
capability.

1. Introduction
Modern  operating systems (OS),  especially those

running on  computer  servers,  are  incorporating  more
and  more  self-healing  techniques  [3,  6].  By  self-
healing, we mean the system is able  to diagnose and
recover from hardware and software component level
failures  automatically,  without  causing  any  apparent
interruption to most applications. In order for a system
to be self-healing, it must have robust failure detection,
diagnosis, isolation, and handling capabilities. The self-
healing  for  hardware  problems  is  typically  done  by
taking the failed component, such as a CPU, memory
region,  or  I/O  channel,  off  line  while  continuing  to
operate with the remaining system resources, achieving
a  graceful  degradation  rather  than  an  undesired
disruption of the entire system.

A recent study [5] of field failure data collected by
Microsoft  from  Windows  XP  machines  reveals  that

memory  is  the  most  frequently  failing  component
among hardware failures. This conclusion matches the
result of a case study of  Sun low-end and mid-range
servers  in  the  field  that  memory is  at  the top  of  the
system  downtime  pareto  for  all  hardware  problems.
Mitigating the disruption of memory failures on system
operation is thus expected to have significant effect on
the  system reliability  and  availability.  This  issue  has
been realized by major server vendors and addressed in
advanced  UNIX  systems.  For  instance,  dynamic
configuration  of  memory  blocks  has  recently  been
implemented in the AIX system [4] and automatic page
retirement has recently been implemented in the Solaris
system [1].

The  Solaris  memory  page  retirement  (MPR)
capability  is  a  self-healing  technique  that  removes  a
physical  page of  memory from use  by the  system in
response  to  Error  Correction  Code  (ECC)  errors
associated  with  that  page.  The  enhanced  MPR
technology in Solaris 10 is driven by a Fault Manager
containing  diagnosis  software  [7]  that  examines  any
memory  correctable  errors  (CEs)  and  uncorrectable
errors (UEs) detected by the underlying hardware. The
diagnosis software can retire memory pages containing
CEs and relocatable clean pages (a clean page can be
refilled from its backing object) containing UEs without
interrupting  user  applications.  It  can  also  isolate
relocatable  dirty  pages  containing  UEs  with  limited
impact on affected user processes to avoid an outage
for the entire system. 

The  Solaris  MPR  technology  is  also  hardware
independent: the implementation is all common code in
the  virtual  memory  subsystem,  and  the  diagnosis
software has been implemented for multiple variants of
the  UltraSPARC  processor  as  well  as  the  AMD
OpteronTM family of processors. This technology could
easily  be  adopted  by other  operating  systems  with  a
modern  virtual  memory  subsystem.  Therefore,  a
quantitative  RAS  analysis  of  MPR  to  measure  the
benefit  of  this  technology  is  of  interest  to  the  OS
developers,  system  designers,  and  end  users. This
study, using analytical models combined with field or
engineering data, quantifies the reliability, availability,
and service cost benefits of deploying MPR on typical
low-end and mid-range data center servers.

The evaluation methodology used in this study is
the  hierarchical  Markov modeling  approach
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implemented  in  RAScad [8],  a  Sun  internal  RAS
architecture  modeling  tool  with  the  automatic  model
generation  capability.  The  tool  supports  integrated
modeling  of  availability,  performability and  service
cost.  The  rest  of  the  paper  is  organized  as  follows.
Section 2 gives an overview of MPR technique. Section
3 discusses the modeled configurations and associated
assumptions.  Section  4  presents  the  models  and
parameters.  Section 5 analyzes results generated from
the models. Section 6 concludes this study. 

2. Overview of MPR
The  MPR  technique  itself  is  quite  simple:  if  a

physical memory page is believed to be affected by an
underlying hardware fault  (e.g.,  a weak cell  or  faulty
row in a memory chip or DRAM), the affected page can
be retired by relocating its content to another physical
page, and placing the retired page on a list of physical
pages that should not be subsequently allocated by the
virtual memory system. If the underlying fault manifests
itself as one or more CEs to the operating system, the
page  retirement  can  be  completed  immediately  by
copying  its  content  to  another  physical  page  and
updating the virtual memory page translation tables.  

If the underlying fault manifests as a UE on a clean
page, the page can be retired  and the OS can take a
subsequent page fault to allocate a new physical page
and re-read the contents of the page from the associated
backing object. If a UE affects a dirty page and the UE
is  detected on a cache write  back,  Solaris  marks the
page as having a UE but defers action until the page is
subsequently accessed (hoping the page will instead be
freed).   Finally, if  a  UE affects a  dirty page and the
error  is  detected  on  an  access,  the  operating  system
forcibly  terminates  the  affected  process,  retires  the
affected  page,  and  then  restarts  the  affected  service.
Therefore,  only pages  that  are  not  relocatable  at  all,
such  as  those  used  within  particular  regions  of  the
kernel itself, are not retirable.

The  diagnosis  software  uses  knowledge  of  the
hardware memory layout and processor memory error
syndromes to drive its decision-making as to the use of
MPR. If sufficient pages within a Dual In-line Memory
Module  (DIMM,  the  basic  field  replaceable  memory
component) have been retired, the software can publish
a message to a human administrator indicating that it is
time for the DIMM to be replaced.

MPR is  implemented entirely in software,  and is
architecture-independent.  It  provides  a  cost-effective,
complementary  technique  to  hardware  memory
reliability  technologies  such  as  chipkill ECC  and
redundant memory channels and chips. It leverages the
underlying  ECC  features  and  provides  an  additional
recovery  action  for  the  system through  the  software
approach. In  particular,  MPR  provides  a  very  cost-
effective solution to memory failures that are isolated to
small regions of cells: no additional hardware cost and
performance  cost  are  incurred,  memory  capacity
gracefully degrades by only the size of a physical page
(typically as  small  as  4K or  8K bytes),  and memory
error recovery is transparent to user applications.   

3. Configurations and assumptions
In this study, two typical server systems, a low-end

data  center  server  (System 1)  and  a  mid-range  data
center server (System 2), are selected for investigating
the  effect  of  the  Solaris  MPR  feature.  The  studied
platforms  do  not  have  sophisticated fault  tolerant
memory  architectures  such  as  chip  sparing  and
automatic  chip reconfiguration,  other than the regular
ECC (single-bit  error  correction  and  double-bit  error
detection)  support.  Some  of  the  current  generation
server  systems  have  incorporated  the  chipkill-correct
ECC (which can correct  multiple erroneous bits from
one  memory  chip)  technology  [2].  The  models
discussed  in  this  paper  are  also  applicable  to  such
memory  architectures  with  relevant  parameters  (e.g.,
Fraction of Correctable Errors) adjusted to reflect the
reduced percentage of uncorrectable errors due to the
chipkill technology.

Some of  the  configurable  components  and  their
RAS features in the two systems are described below.
System 1 includes the following components.
• Four processor chips (degradable, no hot swap)
• 32 GB memory (degradable, no hot swap)
• Four hard disks (redundant, hot swappable) 
• Four power supply units (redundant, hot swappable)
• Two PCI cards (non-redundant)
System 2 includes the following components.
• 24 processor chips (degradable, hot swappable)
• 192 GB memory (degradable, hot swappable)
• Six power supplies (redundant, hot swappable)
• Eight PCI cards (redundant, hot swappable)

Two models, one for the system without MPR and
one for  the  system with MPR,  are  developed  in  this
study to do quantitative comparisons. To simplify the
study, both models assume constant failure and repair
rates.  In  addition,  the  model  for  the  system without
MPR is based on the following assumptions:
• Repeated CEs caused by a memory fault does not

disrupt  the  system  but  a  scheduled  service  is
required to replace the faulty memory component.

• UEs caused by a memory fault  is  handled by the
automatic system recovery  (ASR) functionality  of
the server architecture. That is, the system will de-
configure  the  memory  bank  containing  the  faulty
memory component by rebooting itself and return to
a degraded operational mode. Later on, a scheduled
service  is  required  to  replace  the  faulty  memory
component.
The model for the system with MPR is based on

the following assumptions:
• When CEs or UEs occur, if all pages involved are

retired  successfully,  the  CEs/UEs will  not  disrupt
the system and the faulty memory component will
either not be replaced or be replaced (if the number
of retired pages exceeds a threshold) in a deferred
service  action,  therefore  reducing  unexpected
system interruptions and downtime as  well as  the
number of  services.

• When CEs or UEs occur, if not all pages involved
are retired successfully, the effect of CEs or UEs is
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the  same  as  that  described  above  for  the  system
without MPR.

4. Models and parameters
Figure 1 shows the top level Markov model for the

system without  MPR deployed.  In  the  diagram, each
circle represents a system state. If a state is marked by
1, it is an up state. If a state is marked by 0, it is a down
state. When the system goes from an up state to a down
state,  a  system  interruption  occurs.  The  expression
beside a transition arrow represents the transition rate
for the system to go from one state to another state. The
rate out of a down state reflects downtime the system
stays in that state. The notation used in the models is
explained below.

Figure 1. Top level model without MPR
• Normal:  State  in  which the  system is  functioning

properly (no faults)
• Mem_UE:  State  in  which the system experienced

UEs  and  is  automatically  restarting  itself  to  de-
configure the faulty memory bank

• Degraded: State in which the system is running in a
degraded  mode  (after  de-configuring  the  faulty
memory bank) and waiting for  replacement of the
faulty memory component

• Mem_CE: State in which the system is experiencing
repeated CEs and a service is scheduled to replace
the faulty memory component

• On_Repair:  State  in  which  the  faulty  memory
component is being replaced on line

• Off_Repair:  State  in  which  the  faulty  memory
component is being replaced off line

• Other_Down: State in which the system is down due
to faults of hardware other than memory

• La_mem: Permanent fault rate for entire memory
• La_dimm: Permanent fault rate for a 1GB DIMM (

1/1,500,000 hours, provided by  vendors)
• N: Number of 1GB DIMMs in the system
• FCE:  Fraction  of  correctable  errors  among  all

memory errors  (default  = 80% for  platforms with
regular ECC, estimated from field data)

• FHS:  Fraction  of  the  faulty  memory  component
replacements  that  are  done  by  hot  swap  on  line
without interrupting the OS and user applications

• Tboot: System reboot time (5 minutes for System 1

and 15 minutes for System 2)
• Tlogistic: Logistic time – time for service personnel

to arrive at the scene when the system is down (2
hours, determined by the best service contract)

• Twaiting:  Service waiting time –  waiting  for  off-
peak hours to repair the system (24 hours)

• Trepair:  Time  of  replacing  the  faulty  memory
component (1 hour, a conservative estimate

• La_other: System failure rate due to other hardware
problems than memory faults

• Mu_other:  System  recovery  rate  from  the  above
failure
When  a  CE  occurs,  the  system  goes  into  state

Mem_CE where the fault may generate multiple CEs.
In this state, the system no longer has the capability to
correct an additional single-bit error in the checkword
that already contains an  erroneous bit from the faulty
memory  component.  To  avoid  the  potential  hazard
caused by this loss of memory redundancy, the system
administrator  is  assumed  to  schedule  a  service  to
replace  the  faulty memory  component  at  an off-peak
time  (Mem_CE  ->  Repair_Mem),  to  restore  the
redundancy. In the time window waiting for service, a
second single-bit  (hard or soft) error  occurring in the
same checkword would generate a  UE. A calculation
based  on  engineering  standards  shows  that  the
occurrence  probability  of  such an  event  is  extremely
low  in  the  time  window  (24  hours)  so  that  it  is
negligible and hence not shown in the model.

When a UE occurs that requires a system reset, the
ASR functionality executes after the reboot but before
the  OS  kernel  initializes  to  de-configure  the  faulty
memory  bank.  After  ASR,  the  system  runs  in  a
degraded mode, waiting for an administer to replace the
faulty  memory  component  (Normal  ->  Mem_UE  ->
Degraded).

The replacement of faulty memory components as
well as CPU's and associated  boards can be  done on
line (no downtime) if the dynamic reconfiguration and
hot  swap  functionality  is  provided  by  the  hardware
platform. Some users prefer the off-line repair actions
(stop the system and incur downtime) to avoid possible
damage caused by human error and other imperfect on-
line  repair  problems.  Thus,  the  parameter  FHS  is
introduced in the model to account for the percentage
of repairs that do not incur downtime. This parameter
determines the fraction of the rate from state Degraded
to states On_Repair or Off_Repair, both of which are
service states. For the System 2 model,  FHS is set to
50%, estimated based on our field observation, and a
parametric analysis is done later on this parameter. For
System 1, FHS is set to 0 because it has no hot swap
capability for memory.

If  a  system  failure  occurs  due  to  hardware
problems  other  than  memory  faults,  the  system goes
from the Normal state to  the Other_Down state.  The
associated  failure  rate  (La_other)  and  repair  rate
(Mu_other) are evaluated from a submodel called Other
HW  Model  shown  in  the  gray  color  rectangle box
which represents the interface between the parent model
and the submodel. The parameter's bindings are defined
in the box, i.e., La_other and Mu_other, are bound to
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the submodel output Lambda1 and Mu1 which are the
equivalent  failure  rate  and  repair  rate  [8]  of  the
submodel.  Details  of  the  submodel  are  not  further
discussed in this paper. 

Figure 2 shows the top level Markov model for the
system with MPR deployed. Compared with the model
without  MPR,  this  model  has  two  more  states:
UE_Crash and CE_Remain to account for unsuccessful
page  retirement.  The  additional  notation  used  in  the
model is explained below.
• UE_Crash: State in which the system is restarting

itself  due  to  unsuccessful  attempts  to  isolate  and
recover from an uncorrectable error

• CE_Remain:  State  in  which  correctable  errors
remain in the system after unsuccessful attempts to
retire pages associated with correctable errors

• Tpr:  Time  to  page  retirement  (5  seconds,  a
conservative upper bound)

• Ps_ce: Probability of successful page retirement for
correctable  errors  (default  =  0.75,  estimated  from
field data)

• Ps_ue: Probability of successful page retirement for
uncorrectable errors (default = 0.5)

• FDR:  Fraction  of  deferred  replacement  of  faulty
memory which occurs  when the  number  of  pages
retired  exceeds  a  threshold  (default  =  50%,
estimated from field data)

Figure 2. Top level model with MPR
When multiple CEs occur (a single CE event does

not trigger MPR to avoid retiring pages as the result of
a  soft  upset),  the  system tries  to  retire  the  affected
pages. In most cases, pages containing CEs are retired
successfully, thus avoiding a downtime and unexpected
interruption to replace the faulty memory. If the number
of  pages  retired  exceeds  a  threshold,  the  associated
faulty  memory  components  can  be  replaced  in  a
periodic maintenance event which is not counted as an
interruption  or  downtime,  or  equivalent  to  an on-line
repair  in  the  model.  This  event  is  modeled  by  the
parameter FDR which is set to 50%, an estimate from
field data. However, the page retirement could fail due
to various reasons such as imperfect handling of storms
of correctable  errors  (Mem_CE -> CE_Remain).  The
probability of successful page retirement for correctable
errors  (Ps_ce)  is  set  to  0.75,  based  on  the  field
performance.

When a persistent UE occurs,  the system tries to

retire the affected page in state Mem_UE (notice this is
no longer a down state). If the page is associated with a
user process,  whether it is  clean or  dirty,  the page is
either transparently retired (for the clean case), or the
related user processes are killed and the corresponding
service is automatically restarted by the Solaris Service
Manager.  In both cases,  the system is kept in  the up
state and the page retirement is considered successful
(Mem_UE -> Normal).  Since  the  faulty memory bits
have  now  been  isolated,  it  is  not  yet  necessary  to
schedule  a  service  to  replace  the  faulty  memory
component.  If  the  page is  associated  with the  kernel
itself and is  not relocatable,   the system cannot retire
the  page and has  to  restart  itself  to  de-configure  the
faulty  memory bank  (Mem_UE ->  UE_Crash).  After
the restart, the system runs in a degraded mode, waiting
for replacement of the faulty memory component. The
probability  of  successful  page  retirement  for  UEs
(Ps_ue) is assumed to be 0.5. In the uncertainty analysis
discussed later, the parameter is varied in a wide range
to show its effect on system availability.

The  component  level  failure  rates  are  calculated
using  methods  described  in  Telcordia TR-NWT-
000332 [10] with part-level (ICs, resistors, capacitors,
etc.)  failure  rates  adjusted  based  on  field  data,  or
directly estimated from field data,  or provided by the
OEM  vendors.  The  field  data  used  to  calibrate
component  failure  rates  were  collected  from tens  of
thousands of field machines with billions of cumulative
operating hours. In addition, two field case studies were
conducted to estimate MPR specific parameters (FCE,
Ps_ce,  etc.).  One  study  was  based  on  the  data
representing  376,000  system hours  of  Sun mid-range
servers  for  which  detailed  scenarios  of  CE  and  UE
events as well as MPR actions were recorded. Another
study  was  based  on  the  data  collected  from 16,000
platforms of Sun high-end servers for about one year
period,  which  showed  that  the  number  of  DIMM
dispatches to the field had been reduced by about 35%
for systems with the deployment of MPR. In the next
section, the most sensitive parameters are identified and
an  uncertainty  analysis  is  conducted  on  these
parameters.

5. Analysis of results
Tables  1  and  2  show results  generated  from the

models with and without MPR discussed above, for the
two systems.  With MPR deployed,  system reliability,
availability,  and service cost  can all  be  improved.  In
particular, the system interruption rate can be reduced
by 42% to 45%. The system yearly downtime can be
reduced by 37% to 54%.  The number of services can
be reduced by about 20%.

Table 1. RAS results for system 1
Model Yearly

Interruptions
Yearly

Downtime
Yearly

Services
Without MPR 0.351 23.23min. 0.319
With MPR 0.202 14.65min. 0.253
Reduction by
MPR

42.5% 36.9% 20.7%
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Table 2. RAS results for system 2
Model Yearly

Interruptions
Yearly

Downtime
Yearly

Services
Without MPR 1.106 56.81 min. 1.918
With MPR 0.604 25.86 min. 1.528
Reduction by
MPR

45.4% 54.5% 20.3%

The  variance  on  RAS  improvements  can  be
explained by the RAS architectures of these systems.
For  a redundant component,  the downtime associated
with replacing the faulty component is just the repair
time plus reboot time. For a non-redundant component,
the  failing  of  the  component  would  keep  the  system
down  while  waiting  for  the  arrival  of  the  service
personnel,  which  makes  the  downtime  much  longer.
That is, the more redundancy in the system, the less the
fraction of downtime caused by other HW faults or the
more  effective  the  MPR  on  improving  system
availability,  as seen from the downtime reduction for
the two systems.

The  above  results  were  evaluated  based  on  the
parameters  defined  in  the  previous  section.  Some of
these  parameters  are  configuration  or  workload
dependent (e.g., Tboot and La_dimm) and some are the
FMA implementation related (e.g.,  Ps_ce and Ps_ue).
What  are  the  most  sensitive  parameters  in  terms  of
system downtime? A parameter sensitivity analysis was
performed to identify sensitive parameters. The analysis
results indicate that the system downtime is sensitive to
the  following  parameters  (ordered  by  sensitivity):
Ps_ce,  FHS,  Trepair,  FCE,  La_dimm,  Tboot,  and
Ps_ue.  Among  these  parameters,  La_dimm  is
independent of MPR technology, system configuration
and maintenance and is discussed later. FHS is specific
to  System  2  (which  has  the  memory  hot  swap
capability)  and  is  also  discussed  later.  For  all  other
sensitive parameters, we do an uncertainty analysis to
investigate the impact of variance of these parameters
on system RAS.

The  uncertainty analysis is  supported  in RAScad
and has been used in evaluating availability for the Sun
Java  System  Application  Server  system  [9].  The
method  performs  random  sampling  from  parameter
ranges defined by the user  and can address questions
such as: Assume we have n (sample size) systems with
each  system's  parameters  selected  by  randomly
sampling  from  possible  ranges  in  customer  sites  or
determined  by  workloads,  configurations,  and  other
factors,  what  are  the  average  system availability  and
confidence  intervals?  The  ranges  for  the  selected
parameters are defined as follows.
• Tboot: 2 - 10 min. for System 1, 10 - 20 min. for

System 2
• Trepair: 0.5 - 1.5 hours
• FCE: 80% - 90%
• Ps_ce: 0.6 – 0.95
• Ps_ue: 0.25 – 0.75

The  sample  size  is  10,000.  In  each  sampling,
RAScad randomly picks up a value for each parameter

from the above ranges to calculate system results. The
90% confidence interval (90% CI) can be determined
from the 10,000 points in the RAScad output, as shown
in Tables 3 and 4. Taking these 90% CI's into account,
the improvement made by MPR ranges from 37% to
59% for  system interruptions,  from 27% to  73% for
system downtime,  and  from 17% to  26%  for  system
services,   depending on platforms, configurations and
workloads.

Table 3. Uncertainty analysis results for System 1
Yearly Interrupts Yearly Downtime Yearly Services
90% CI Reduc-

tion
90% CI
(min.)

Reduc-
tion

90% CI Reduc-
tion

0.161 54.1% 12.26 47.2% 0.237 25.7%
0.220 37.3% 16.99 26.9% 0.263 17.6%

Table 4. Uncertainty analysis results for System 2
Yearly Interrupts Yearly Downtime Yearly Services
90% CI Reduc-

tion
90% CI
(min.)

Reduc-
tion

90% CI Reduc-
tion

0.452 59.0% 15.03 73.5% 1.430 25.4%
0.663 40.1% 34.96 38.5% 1.588 17.2%

The failure rate of memory components determines
the memory contribution to the overall system failures
and thus directly affects the results of the MPR RAS
analysis.  Figures  3  and  4  show how the  variance  of
memory  component  failure  rate  in  a  possible  range
would change the results for Systems 1 and 2. When the
DIMM MTBF (1/La_dimm) varies from 1,000,000 to
5,000,000 hours, the effect of MPR on system RAS can
decrease by over 50%. A recent case study on a sample
of mid-range data center servers in the field indicates
that the average DIMM MTBF is at the low end of the
above  range  (close  to  the  vendor  supplied  data).
However, we cannot exclude the possibility of higher
MTBF numbers to be seen for DIMMs of better quality
or  running  on  different  workloads.  This  parametric
analysis  provides  an  insight  into  the  effect  of  the
memory failure rate on the benefit of MPR.

Figure 3. Effect of DIMM MTBF on system 1
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Figure 4. Effect of DIMM MTBF on system 2
Finally,  we investigate  the  effect  of  a  parameter

specific  to  System 2,  FHS,  the  fraction  of  hot  swap
replacement  of  faulty  memory  components.  Figure  5
shows how this parameter affects the analysis results.
The lower the FHS, the more the impact of MPR on
system  reliability  and  availability.  That  is,  systems
using  less  the  hot  swap  capability  would  be  more
beneficial from the MPR deployment. This is because
less hot  swap translates  to  more  system interruptions
and downtime.

Figure 5. Effect of FHS on system 2

6. Conclusions
In this study Markov models, combined with field

measurements,  were used to  assess  the improvements
made  by  the  Solaris  MPR  self-healing  technique  on
system  interruptions,  downtime,  and  service  actions
introduced  by  permanent  memory  faults,  for  typical
server systems. The parameters used in the models were
calibrated  by  field  data  or  estimated  using  the
engineering  judgment.  The  uncertainty  analysis  was
conducted  to  obtain the  90% confidence intervals  by
varying  sensitive  parameters  in  wide  ranges.  The
parametric  analysis was also done on key parameters.
The  results  indicate  that  with  MPR  deployed,  the
system interruptions caused by hardware faults can be
reduced by 42% to 45%, the system downtime caused
by hardware faults can be reduced by 37% to 54%, and
the  number  of  system services  incurred  by hardware
faults can be reduced by about 20%. 

Since  the  memory  configuration  in  the  modeled

platforms is maximized, the analysis results tend to be
optimistic.  However,  these results  are  consistent  with
the  field  data  in  that  memory is  the  top  item of  the
system interruptions and downtime caused by hardware
problems.  The  results  are  also  consistent  with  our
observation that the number of DIMM dispatches to the
field has been reduced by about 35% for systems with
the deployment of MPR. 

Since the MPR feature is implemented entirely in
software,  it  provides  an extremely cost-effective RAS
feature that  complements hardware reliability features
for memory such as redundant memory chips and lanes,
and  chipkill  ECC.  MPR  can  have  a  dramatic  RAS
improvement  on  systems  with  a  large  memory
configuration  that  lacks  redundancy,  and therefore  is
especially  well-suited  to  systems  where  the  use  of
redundancy  is  constrained  by  cost,  physical  space,
power,  or  cooling  requirements.  MPR  has  been
successfully  implemented  for  Solaris  on  both
UltraSPARC  and  OpteronTM based  systems,  and  can
easily be added to any operating system with modern
virtual memory management features.
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